Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.781
Filtrar
1.
Int J Lab Hematol ; 46(3): 495-502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379463

RESUMO

BACKGROUND: Detection of del(17p) in myeloma is generally performed by fluorescence in situ hybridization (FISH) on a slide with analysis of up to 200 nuclei. The small cell sample analyzed makes this a low precision test. We report the utility of an automated FISH method, called "immuno-flowFISH", to detect plasma cells with adverse prognostic risk del(17p) in bone marrow and blood samples of patients with myeloma. METHODS: Bone marrow (n = 31) and blood (n = 19) samples from 35 patients with myeloma were analyzed using immuno-flowFISH. Plasma cells were identified by CD38/CD138-immunophenotypic gating and assessed for the 17p locus and centromere of chromosome 17. Cells were acquired on an AMNIS ImageStreamX MkII imaging flow cytometer using INSPIRE software. RESULTS: Chromosome 17 abnormalities were identified in CD38/CD138-positive cells in bone marrow (6/31) and blood (4/19) samples when the percent plasma cell burden ranged from 0.03% to 100% of cells. Abnormalities could be identified in 14.5%-100% of plasma cells. CONCLUSIONS: The "immuno-flowFISH" imaging flow cytometric method could detect del(17p) in plasma cells in both bone marrow and blood samples of myeloma patients. This method was also able to detect gains and losses of chromosome 17, which are also of prognostic significance. The lowest levels of 0.009% (bone marrow) and 0.001% (blood) for chromosome 17 abnormalities was below the detection limit of current FISH method. This method offers potential as a new means of identifying these prognostically important chromosomal defects, even when only rare cells are present and for serial disease monitoring.


Assuntos
Cromossomos Humanos Par 17 , Citometria de Fluxo , Hibridização in Situ Fluorescente , Mieloma Múltiplo , Plasmócitos , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/sangue , Mieloma Múltiplo/patologia , Plasmócitos/patologia , Citometria de Fluxo/métodos , Cromossomos Humanos Par 17/genética , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Medula Óssea/patologia , Deleção Cromossômica , Idoso de 80 Anos ou mais , Imunofenotipagem , Adulto
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(6): 727-732, 2023 Jun 10.
Artigo em Chinês | MEDLINE | ID: mdl-37212011

RESUMO

OBJECTIVE: To carry out optical genome mapping (OGM) for a Chinese pedigree with a rare paracentric reverse insertion of chromosome 17. METHODS: A high-risk pregnant woman identified at the Prenatal Diagnosis Center of Hangzhou Women's Hospital in October 2021 and her family members were selected as the study subjects. Chromosome G banding analysis, fluorescence in situ hybridization (FISH), single nucleotide polymorphism array (SNP array) and OGM were applied to verify the balanced structural abnormality of chromosome 17 in the pedigree. RESULTS: Chromosomal karyotyping analysis and SNP array assay have identified a duplication of 17q23q25 in the fetus. Karyotyping analysis of the pregnant woman showed that the structure of chromosome 17 was abnormal, whilst SNP array has detected no abnormality. OGM revealed that the woman has carried a paracentric reverse insertion, which was confirmed by FISH. The karyotype of her husband was normal. CONCLUSION: The duplication of 17q23q25 in the fetus has derived from a paracentric reverse insertion of chromosome 17 in its mother. OGM has the advantage for delineating balanced chromosome structural abnormalities.


Assuntos
Cromossomos Humanos Par 17 , População do Leste Asiático , Gravidez , Humanos , Feminino , Linhagem , Hibridização in Situ Fluorescente , Cromossomos Humanos Par 17/genética , Aberrações Cromossômicas , Diagnóstico Pré-Natal , Mapeamento Cromossômico , Inversão Cromossômica
3.
Am J Med Genet A ; 191(7): 1814-1825, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37053206

RESUMO

Koolen-de Vries syndrome (KdVS) is a rare multisystemic disorder caused by a microdeletion on chromosome 17q21.31 including KANSL1 gene or intragenic pathogenic variants in KANSL1 gene. Here, we describe the clinical and genetic spectrum of eight Turkish children with KdVS due to a de novo 17q21.31 deletion, and report on several rare/new conditions. Eight patients from unrelated families aged between 17 months and 19 years enrolled in this study. All patients evaluated by a clinical geneticist, and the clinical diagnosis were confirmed by molecular karyotyping. KdVS patients had some common distinctive facial features. All patients had neuromotor retardation, and speech and language delay. Epilepsy, structural brain anomalies, ocular, ectodermal, and musculoskeletal findings, and friendly personality were remarkable in more than half of the patients. Hypertension, hypothyroidism, celiac disease, and postaxial polydactyly were among the rare/new conditions. Our study contributes to the clinical spectrum of patients with KdVS, while also provide a review by comparing them with previous cohort studies.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Humanos , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Deleção Cromossômica , Doenças Raras/genética , Fenótipo , Cromossomos Humanos Par 17/genética
4.
Neuromuscul Disord ; 33(5): 367-370, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996638

RESUMO

Uniparental isodisomy is a condition where both chromosomes of a pair are inherited from one parental homologue. If a deleterious variant is present on the duplicated chromosome, its homozygosity can reveal an autosomal recessive disorder in the offspring of a heterozygous carrier. Limb-girdle muscular dystrophy (LGMD) R3 is an autosomal recessive inherited disease that is associated with alpha-sarcoglycan gene (SGCA) variants. We report the first published case of LGMDR3 due to a homozygous variant in SGCA unmasked by uniparental isodisomy. The patient is an 8-year-old who experienced delayed motor milestones but normal cognitive development. He presented with muscle pain and elevated plasma creatine kinase. Sequencing of the SGCA gene showed a homozygous pathogenic variant. Parents were not related and only the father was heterozygous for the pathogenic variant. A chromosomal microarray revealed a complete chromosome 17 copy number neutral loss of heterozygosity encompassing SGCA, indicating paternal uniparental isodisomy.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Dissomia Uniparental , Masculino , Humanos , Criança , Dissomia Uniparental/genética , Cromossomos Humanos Par 17/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Sarcoglicanas/genética , Pai
5.
Am J Med Genet A ; 191(2): 526-539, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36433683

RESUMO

Deletion of 17p13.3 has varying degrees of severity on brain development based on precise location and size of the deletion. The most severe phenotype is Miller-Dieker syndrome (MDS) which is characterized by lissencephaly, dysmorphic facial features, growth failure, developmental disability, and often early death. Haploinsufficiency of PAFAH1B1 is responsible for the characteristic lissencephaly in MDS. The precise role of YWHAE haploinsufficiency in MDS is unclear. Case reports are beginning to elucidate the phenotypes of individuals with 17p13.3 deletions that have deletion of YWHAE but do not include deletion of PAFAH1B1. Through our clinical genetics practice, we identified four individuals with 17p13.3 deletion that include YWHAE but not PAFAH1B1. These patients have a similar phenotype of dysmorphic facial features, developmental delay, and leukoencephalopathy. In a review of the literature, we identified 19 patients with 17p13.3 microdeletion sparing PAFAH1B1 but deleting YWHAE. Haploinsufficiency of YWHAE is associated with brain abnormalities including cystic changes. These individuals have high frequency of epilepsy, intellectual disability, and dysmorphic facial features including prominent forehead, epicanthal folds, and broad nasal root. We conclude that deletion of 17p13.3 excluding PAFAH1B1 but including YWHAE is associated with a consistent phenotype and should be considered a distinct condition from MDS.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Deficiência Intelectual , Lisencefalia , Humanos , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Deleção Cromossômica , Lisencefalia/genética , Fenótipo , Deficiência Intelectual/genética , Cromossomos Humanos Par 17/genética , Encéfalo , Proteínas 14-3-3/genética
6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-981816

RESUMO

OBJECTIVE@#To carry out optical genome mapping (OGM) for a Chinese pedigree with a rare paracentric reverse insertion of chromosome 17.@*METHODS@#A high-risk pregnant woman identified at the Prenatal Diagnosis Center of Hangzhou Women's Hospital in October 2021 and her family members were selected as the study subjects. Chromosome G banding analysis, fluorescence in situ hybridization (FISH), single nucleotide polymorphism array (SNP array) and OGM were applied to verify the balanced structural abnormality of chromosome 17 in the pedigree.@*RESULTS@#Chromosomal karyotyping analysis and SNP array assay have identified a duplication of 17q23q25 in the fetus. Karyotyping analysis of the pregnant woman showed that the structure of chromosome 17 was abnormal, whilst SNP array has detected no abnormality. OGM revealed that the woman has carried a paracentric reverse insertion, which was confirmed by FISH. The karyotype of her husband was normal.@*CONCLUSION@#The duplication of 17q23q25 in the fetus has derived from a paracentric reverse insertion of chromosome 17 in its mother. OGM has the advantage for delineating balanced chromosome structural abnormalities.


Assuntos
Gravidez , Humanos , Feminino , Linhagem , Hibridização in Situ Fluorescente , Cromossomos Humanos Par 17/genética , População do Leste Asiático , Aberrações Cromossômicas , Diagnóstico Pré-Natal , Mapeamento Cromossômico , Inversão Cromossômica
7.
Andrologia ; 54(11): e14620, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36270636

RESUMO

We present two cases of infertile males with teratozoospermia stemming from chromosome 17 translocation. The patients present karyotypes that have not been previously reported. Genes located on breakpoints (17p11.2, 9q31, and 11p15) were analysed to find the probable mechanism affecting sperm morphology. Our results suggest that ALKBH5, TOP3A, and LLGL1 interactions may be an underlying cause of abnormal sperm head morphology. Translocation of chromosome 17 occurred in conjunction with chromosome 9 and chromosome 11 translocation in the two cases, resulting in oligozoospermia and asthenozoospermia, respectively. These abnormal phenotypes may involve meiosis- and motility-related genes such as LDHC, DNHD1, UBQLN3, and NUP98. Translocation is thus a risk factor for sperm morphological abnormalities and motility deficiency. The interaction network of 22 genes on breakpoints suggests that they contribute to spermatogenesis as a group. In conclusion, this study highlighted the importance of investigating genes linked to sperm morphology, together with chromosome 17 translocation and reproductive risks. For patients interested in screening before a future pregnancy, we recommend preimplantation genetic diagnosis to reduce the risk of karyotypically unbalanced foetuses and birth defects.


Assuntos
Infertilidade Masculina , Oligospermia , Teratozoospermia , Humanos , Gravidez , Feminino , Masculino , Cromossomos Humanos Par 17/genética , Sêmen , Oligospermia/genética , Infertilidade Masculina/genética , Teratozoospermia/genética , Translocação Genética , Espermatozoides/anormalidades
8.
Hum Mutat ; 43(12): 1856-1859, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116037

RESUMO

Next-generation sequencing (NGS) is a valuable tool, but has limitations in sequencing through repetitive runs of single nucleotides (homopolymers). Pathogenic germline variants in WRAP53 encoding telomere Cajal body protein 1 (TCAB1) are a known cause of dyskeratosis congenita. We identified a significant NGS error in WRAP53, c.1562dup, p.Ala522Glyfs*8 (rs755116516 G>-/GG/GGG) that did not validate by Sanger sequencing. This error occurs because rs755116516 G>-/GG/GGG (Chr17:7,606,714) is polymorphic, and variants at this site challenge the ability of NGS to accurately call the correct number of nucleotides in a homopolymer run. This was further complicated by the fact that chr17:7,606,721 (rs769202794) is multiallelic G>A, C, T, and that chr17:7,606,722 is also multiallelic (rs7640C>A/G/T and rs373064567C>delC). In addition to the expert interpretation of potentially clinically actionable variants, it recommended that all variants in regions of the genome with homopolymers be validated by Sanger sequencing before clinical action.


Assuntos
Cromossomos Humanos Par 17 , Disceratose Congênita , Chaperonas Moleculares , Telomerase , Humanos , Cromossomos Humanos Par 17/genética , Disceratose Congênita/genética , Variação Genética , Mutação em Linhagem Germinativa/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Chaperonas Moleculares/genética , Telomerase/genética
9.
Pediatr Pulmonol ; 57(12): 3177, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36052672

RESUMO

This correspondence discusses on published article on asthma 17q21 polymorphism and risk of COVID-19 in children. The effect of other possible confounding factors are discussed.


Assuntos
Asma , COVID-19 , Criança , Humanos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , COVID-19/genética , Fatores de Risco , Asma/epidemiologia , Asma/genética , Cromossomos Humanos Par 17/genética
10.
Science ; 377(6608): eabi8654, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35981026

RESUMO

Predicting the function of noncoding variation is a major challenge in modern genetics. In this study, we used massively parallel reporter assays to screen 5706 variants identified from genome-wide association studies for both Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), identifying 320 functional regulatory variants (frVars) across 27 loci, including the complex 17q21.31 region. We identified and validated multiple risk loci using CRISPR interference or excision, including complement 4 (C4A) and APOC1 in AD and PLEKHM1 and KANSL1 in PSP. Functional variants disrupt transcription factor binding sites converging on enhancers with cell type-specific activity in PSP and AD, implicating a neuronal SP1-driven regulatory network in PSP pathogenesis. These analyses suggest that noncoding genetic risk is driven by common genetic variants through their aggregate activity on specific transcriptional programs.


Assuntos
Doença de Alzheimer , Cromossomos Humanos Par 17 , Redes Reguladoras de Genes , Variação Genética , Regiões não Traduzidas , Doença de Alzheimer/genética , Cromossomos Humanos Par 17/genética , Genes Reporter , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Fatores de Risco , Paralisia Supranuclear Progressiva/genética , Regiões não Traduzidas/genética
11.
Int J Hematol ; 116(6): 956-960, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35854096

RESUMO

Acute promyelocytic leukemia (APL) is characterized by a series of retinoic acid receptor (RAR) fusion genes that lead to the dysregulation of RAR signaling and onset of APL. PML-RARA is the most common fusion generated from t(15;17)(q24;q21). In addition, the reciprocal fusion RARA-PML is present in over 80% of t(15;17) APL cases. The bcr3 types of RARA-PML and RARA-PLZF in particular are reciprocal fusions that contribute to leukemogenesis. Here, we report a variant APL case with t(11;17;15)(q13;q21.2;q24.1). Massive parallel sequencing of patient RNA detected the novel fusion transcripts RARA-SNX15 and SNX15-LINC02255 along with the bcr3 type of PML-RARA. Genetic analysis revealed that RARA-SNX15L is an in-frame fusion due to intron retention caused by RNA mis-splicing. RARA-SNX15L consisted mainly of SNX15 domains, including the Phox-homology domain, which has a critical role in protein-protein interactions among sorting nexins and with other partners. Co-immunoprecipitation analysis revealed that RARA-SNX15L is directly associated with SNX15 and with itself. Further studies are needed to evaluate the biological significance of RARA-SNX15L in APL. In conclusion, this is the first report of APL with a complex chromosomal rearrangement involving SNX15.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/genética , Receptores do Ácido Retinoico/genética , Fusão Gênica , Íntrons , RNA , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 15/genética
13.
Histopathology ; 81(4): 511-519, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35879836

RESUMO

BACKGROUND AND AIMS: Chromosome 17 alterations affect the assessment of HER2 gene amplification in breast cancer (BC), but its clinical significance remains unclear. This study aimed to identify the prevalence of centromere enumeration probe 17 (CEP17) alterations, and its correlation with response to neoadjuvant therapy (NAT) in BC patients with human epidermal growth factor receptor 2 (HER2) immunohistochemistry-equivocal score. METHODS AND RESULTS: A large BC cohort (n = 6049) with HER2 immunohistochemistry score 2+ and florescent in-situ hybridisation (FISH) results was included to assess the prevalence of CEP17 alterations. Another cohort (n = 885) with available clinicopathological data was used to evaluate the effect of CEP17 in the setting of NAT. HER2-amplified tumours with monosomy 17 (CEP17 copy number < 1.5 per nucleus), normal 17 (CEP17 1.5-< 3.0) and polysomy 17 (CEP17 ≥ 3.0) were observed in 16, 59 and 25%, respectively, compared with 3, 74 and 23%, respectively, in HER2-non-amplified tumours. There was no significant relationship between CEP17 alterations and pathological complete response (pCR) rate in both HER2-amplified and HER2-non-amplified tumours. The independent predictors of pCR were oestrogen (ER) negativity in HER2-amplified tumours [ER negative versus positive; odds ratio (OR) = 11.80; 95% confidence interval (CI) = 1.37-102.00; P = 0.02], and histological grade 3 in HER2 non-amplified tumours (3 versus 1, 2; OR = 5.54; 95% CI = 1.61-19.00; P = 0.007). CONCLUSION: The impacts of CEP17 alterations are not as strong as those of HER2/CEP17 ratio and HER2 copy number. The hormonal receptors status and tumour histological grade are more useful to identify BC patients with a HER2 immunohistochemistry-equivocal score who would benefit from NAT.


Assuntos
Neoplasias da Mama , Aberrações Cromossômicas , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Centrômero , Cromossomos Humanos Par 17/genética , Feminino , Amplificação de Genes , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente/métodos , Receptor ErbB-2/análise
14.
Genes Chromosomes Cancer ; 61(10): 629-634, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35639830

RESUMO

The diagnosis of acute promyelocytic leukemia (APL) relies on the identification of PML::RARA fusion. While the majority of APL cases harbor a typical t(15;17)(q24;q21), atypical genetic mechanisms leading to the oncogenic PML::RARA fusion have been reported yet their frequency and scope remain poorly characterized. We assessed the genetic findings of 831 cases with APL investigated with concurrent chromosome banding analysis and dual-color dual-fusion fluorescence in situ hybridization (D-FISH) analysis at our institution over an 18.5-year timeframe. Seven hundred twenty-three (87%) cases had a typical balanced t(15;17) with both testing modalities. Atypical karyotypic results including complex translocations, unbalanced rearrangements and insertional events occurred in 50 (6%) cases, while 6 (0.7%) cases were cryptic by conventional chromosome studies despite PML::RARA fusion by D-FISH evaluation. Atypical FISH patterns were observed in 48 (6%) cases despite apparently balanced t(15;17) on chromosome banding analysis. Two hundred fifty (30%) cases displayed additional chromosome abnormalities of which trisomy/tetrasomy 8 (37%), del(7q)/add(7q) (12%), and del(9q) (7%) were most frequent. Complex and very complex karyotypes were observed in 81 (10%) and 34 (4%) cases, respectively. In addition, 4 (0.5%) cases presented as an apparently doubled, near-tetraploid stemline clone. This report provides the largest appraisal of cytogenetic findings in APL with conventional chromosome and PML::RARA D-FISH analysis. By characterizing the frequency and breadth of typical and atypical results through the lens of these cytogenetic testing modalities, this study serves as a pragmatic source of information for those involved in the investigation of APL in both the clinical and research laboratory settings.


Assuntos
Leucemia Promielocítica Aguda , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 8 , Humanos , Hibridização in Situ Fluorescente , Leucemia Promielocítica Aguda/genética , Proteínas de Fusão Oncogênica/genética , Estudos Retrospectivos , Translocação Genética , Trissomia
15.
Nat Commun ; 13(1): 931, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177641

RESUMO

Koolen-de Vries syndrome (KdVS) is a rare disorder caused by haploinsufficiency of KAT8 regulatory NSL complex subunit 1 (KANSL1), which is characterized by intellectual disability, heart failure, hypotonia, and congenital malformations. To date, no effective treatment has been found for KdVS, largely due to its unknown pathogenesis. Using siRNA screening, we identified KANSL1 as an essential gene for autophagy. Mechanistic study shows that KANSL1 modulates autophagosome-lysosome fusion for cargo degradation via transcriptional regulation of autophagosomal gene, STX17. Kansl1+/- mice exhibit impairment in the autophagic clearance of damaged mitochondria and accumulation of reactive oxygen species, thereby resulting in defective neuronal and cardiac functions. Moreover, we discovered that the FDA-approved drug 13-cis retinoic acid can reverse these mitophagic defects and neurobehavioral abnormalities in Kansl1+/- mice by promoting autophagosome-lysosome fusion. Hence, these findings demonstrate a critical role for KANSL1 in autophagy and indicate a potentially viable therapeutic strategy for KdVS.


Assuntos
Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Mitofagia/genética , Proteínas Nucleares/genética , Anormalidades Múltiplas/tratamento farmacológico , Anormalidades Múltiplas/imunologia , Anormalidades Múltiplas/patologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/patologia , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 17/imunologia , Modelos Animais de Doenças , Feminino , Haploinsuficiência/imunologia , Células HeLa , Humanos , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/imunologia , Deficiência Intelectual/patologia , Isotretinoína/farmacologia , Isotretinoína/uso terapêutico , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Camundongos Transgênicos , Mitofagia/efeitos dos fármacos , Mitofagia/imunologia , Neurônios , Proteínas Nucleares/metabolismo , Cultura Primária de Células
16.
Cancer Genet ; 262-263: 111-117, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219054

RESUMO

Here, we report a case of Acute promyelocytic leukemia (APL) with three way complex translocation involving chromosomes 4, 15, and 17. Although chromosome 4 is most commonly associated chromosome in three way translocation, present case is the first report with four novel co-existent findings of new break point region on chromosome 4, new cyclic mechanism with simultaneous breaks, presence of a co-existent tetrasomy 8 and FLT3 ITD positivity.; Comprehensive assessment highlight the utility of combining morphology, immunophenotyping, karyotyping, fluorescence in situ hybridization, and molecular studies for better characterization, optimal management of APL with a better understanding of the pathogenic mechanism and prognosis of the disease.


Assuntos
Leucemia Promielocítica Aguda , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 17/genética , Humanos , Hibridização in Situ Fluorescente , Leucemia Promielocítica Aguda/complicações , Leucemia Promielocítica Aguda/genética , Prognóstico , Tetrassomia , Translocação Genética/genética , Tirosina Quinase 3 Semelhante a fms/genética
17.
Medicine (Baltimore) ; 101(49): e32216, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36626513

RESUMO

Male infertility is a multifactorial reproductive disorder. The effect of genetic factors on male infertility has been the focus of research. Although a variety of genetic techniques are applied to male infertility in clinical practice, karyotype analysis remains a powerful and inexpensive technology. Reciprocal chromosomal translocation (RCT) is closely related to male infertility, but the clinical phenotypes of RCT carriers are varied, and the underlying pathological mechanism is unclear. Some studies suggest that RCT breakpoints disrupt the structure and function of important genes responsible for spermatogenesis. Several breakpoints of chromosome 17 are related to important genes, which can lead to spermatogenic failure. This study aimed to identify the clinical features of 3 men with translocation karyotypes involving breakpoints on chromosome 17p13. Semen analysis and cytogenetic analysis were performed with informed consent. Gene ontology analysis was performed for 60 pathogenic genes on chromosome band 17p13. Cytogenetic analysis showed that the karyotypes were 46, XY, t(6;17) (p21;p13), 46,XY,t(10;17)(q11.2;p13), and 46, XY, t(17;20) (p13;q13), respectively. Relevant studies and genes on breakpoints on chromosome 17p13 were searched for using PubMed. Fourteen reported cases of the same karyotype were reviewed. The results suggest that although chromosome 17 is closely related to spermatogenic failure, the clinical phenotypes of RCT carriers with involvement of 17p13 breakpoints are varied. The important genes involved in the breakpoint were analyzed. The results of molecular functions suggested that these targets genes on chromosome band 17p13 were mostly involved in microfilament motor activity, ATPase activity. These results suggested that the translocation chromosome and breakpoint analysis should be considered in the clinical assessment of the patients. Physicians should be aware of these in genetic counseling. These breakpoints and the function of related genes require further study.


Assuntos
Infertilidade Masculina , Translocação Genética , Humanos , Masculino , Pontos de Quebra do Cromossomo , Infertilidade Masculina/genética , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Fertilidade
18.
Cytogenet Genome Res ; 162(6): 306-311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36724749

RESUMO

Acute promyelocytic leukemia (APL) is characterized by the chromosomal translocation t(15;17)(q24;q21), raising two hybrid genes: PML::RARA and RARA::PML. There is a biased clonal evolution in APL since imbalances affecting the der(15) chromosome (the one that carries the transforming PML::RARA gene) have never been reported; instead, imbalances of the der(17), mainly in form of an ider(17)(q10), have been repeatedly documented. We here present two cases with APL who acquired an ider(17)(q10) as a secondary chromosomal change. The presence of the ider(17)(q10) implies several genomic consequences with potential to fuel tumor progression: (1) a duplication of the hybrid gene RARA::PML; (2) a cumulative haploinsufficiency for tumor suppressor genes located in the 17p arm; and (3) a cumulative triplosensitivity of genes located in 17q10→RARA::PML→15qter. Both our patients were treated following the PETHEMA LPA 2012 protocol with ATRA plus idarubicin and they have had a long event-free survival.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/genética , Translocação Genética/genética , Cromossomos , Proteínas de Fusão Oncogênica/genética , Cromossomos Humanos Par 17/genética
19.
Mod Pathol ; 35(4): 549-553, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34663915

RESUMO

The College of American Pathologists/American Society of Clinical Oncology recommends HER2 testing prior to initiation of targeted therapy for patients with advanced Gastroesophageal adenocarcinoma (GEA), using immunohistochemistry (IHC) followed by fluorescence in situ hybridization (FISH) in cases with an equivocal (score 2 + ) result on IHC. The FISH results are considered indeterminate if the HER2/CEP17 ratio is <2.0 with an average CEP17 copy number of ≥3.0 and a HER2 copy number ≥4.0 and ≤6.0 after counting additional tumor cells. Indeterminate results may be resolved by using an alternative chromosome 17 probe such as RAI1. The purpose of this study is to review our experience with RAI1 alternate probe in HER2 FISH testing of GEA in a large reference laboratory setting. Esophageal, gastroesophageal, and gastric adenocarcinomas received for HER2 FISH testing in our lab between 9/2018 and 1/2020 were included. HER2/CEP17 and HER2/ RAI1 ratios, and the average HER2, CEP17, RAI1 signals per cell were recorded. 328 GEA had HER2 testing performed in our lab during the study period. 101 (30.8%) were amplified, 169 (51.5%) were non-amplified and 58 (17.7%) were indeterminate. Following RAI1 testing, 42 (72.4%) of 58 indeterminate cases were reclassified as non-amplified and 16 (27.6%) were reclassified as amplified, increasing the total amplified cases to 117 (35.7%). The correlation between the average CEP17 and RAI1 copy number for all cases was weak (R2 = 0.095). In summary, using the alternate probe RAI1 reclassifies 27.6% of original HER2 FISH indeterminate gastroesophageal carcinomas as amplified, which makes them eligible for targeted therapies.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Cromossomos Humanos Par 17/genética , Feminino , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente/métodos , Receptor ErbB-2/genética
20.
Hum Genet ; 141(2): 217-227, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34821995

RESUMO

Cooks syndrome (CS) is an ultrarare limb malformation due to in tandem microduplications involving KCNJ2 and extending to the 5' regulatory element of SOX9. To date, six CS families were resolved at the molecular level. Subsequent studies explored the evolutionary and pathological complexities of the SOX9-KCNJ2/Sox9-Kcnj2 locus, and suggested a key role for the formation of novel topologically associating domain (TAD) by inter-TAD duplications in causing CS. Here, we report a unique case of CS associated with a de novo 1;17 translocation affecting the KCNJ2 locus. On chromosome 17, the breakpoint mapped between KCNJ16 and KCNJ2, and combined with a ~ 5 kb deletion in the 5' of KCNJ2. Based on available capture Hi-C data, the breakpoint on chromosome 17 separated KCNJ2 from a putative enhancer. Gene expression analysis demonstrated downregulation of KCNJ2 in both patient's blood cells and cultured skin fibroblasts. Our findings suggest that a complex rearrangement falling in the 5' of KCNJ2 may mimic the developmental consequences of in tandem duplications affecting the SOX9-KCNJ2/Sox9-Kcnj2 locus. This finding adds weight to the notion of an intricate role of gene regulatory regions and, presumably, the related three-dimensional chromatin structure in normal and abnormal human morphology.


Assuntos
Dedos/anormalidades , Deformidades Congênitas do Pé/genética , Rearranjo Gênico , Deformidades Congênitas da Mão/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sequências Reguladoras de Ácido Nucleico , Adolescente , Adulto , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 17/genética , Facies , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/química , Deleção de Sequência , Translocação Genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...